Many farmers in the country like India have only vague ideas about organic farming and its advantages as against the conventional farming methods. Farmers lack knowledge of compost making using the modern techniques and also its application. Use of certified organic inputs and organic-pesticides requires awareness and willingness on the part of the farming community. Organic inputs means which are made only from plant, animal and seaweed extracts and approved to use in organic farming under specific organic standards.
Organic Approved (certified) Inputs :
These are organic fertilizers, organic pesticides , organic fungicides or any other inputs which are allowed to used under any specific organic standards. These are the products which are approved or certified by the any certification body with reference to any specific organic standards, there are more than 500 certification bodies across the world which provides organic certification to farm, inputs and handling.
List of certification bodies working in India can be obtained from following link..
http://ncof.dacnet.nic.in/…/List_of_certification_Bodies.pdf
You can get certified organic inputs worldwide online from www.orgakart.com.The home of certified organic inputs and home gardening equipment..
There are many kinds of mushrooms. One of the beauties of growing your own instead of wild-harvesting them is that you can be sure you're not picking a poisonous mushroom.
These mushrooms are the types most commonly grown at home:
Crimini
Enoki
Maitake
Portobello
Oyster
Shiitake
White button
Each type has specific growing needs. Grow white button mushrooms on composted manure, shiitakes on wood or hardwood sawdust, and oyster mushrooms on straw.
There's no need to be in the dark about growing mushrooms. These tasty chameleons of the food world are fat-free, low in calories, and filled with vitamins, antioxidants, and other nutrients.
Mushrooms grow from spores -- not seeds -- that are so tiny you can't see individual spores with the naked eye.
Because the spores don't contain chlorophyll to begin germinating, they rely on substances such as sawdust, grain, wooden plugs, straw, wood chips, or liquid for nourishment. A blend of the spores and these nutrients is called spawn. Spawn performs a bit like the starter needed to make sourdough bread.
The spawn supports the growth of mushrooms' tiny, white, threadlike roots, called mycelium. The mycelium grows first, before anything that resembles a mushroom pushes through the growing medium.
The spawn itself could grow mushrooms, but you'll get a lot better mushroom harvest when the spawn is applied to a substrate, or growing medium. Depending on the mushroom type, the substrate might be straw, cardboard, logs, wood chips, or compost with a blend of materials such as straw, corncobs, cotton and cocoa seed hulls, gypsum, and nitrogen supplements.
Mushrooms prefer dark, cool, moist, and humid growing environments. In a house, a basement is often ideal, but a spot under the sink may be all you need.
Test the proposed location by checking the temperature. Most mushrooms grow best in temperatures between 55 and 60 degrees F, away from drying, direct heat and drafts. Enoki mushrooms prefer cooler temperatures, about 45 degrees F. Many basements are too warm in summer to grow mushrooms, so you might consider growing mushrooms as a winter project.
Mushrooms can tolerate some light, but the spot you choose should stay relatively dark or in low light.
Some mushroom types grow outdoors in prepared ground or logs, a process that takes much longer (six months to three years) than in controlled environments inside.
If you are growing mushrooms in your home, you have a couple of options for materials.
You can buy mushroom kits already packed with a growing medium that's inoculated with mushroom spawn. Buying a kit is a good way to begin your knowledge of mushroom growing. If you start without a kit, the type of mushroom you choose to grow determines the substrate you grow the mushrooms on. Research each mushroom's needs.
Button mushrooms are among the easiest types to grow. Use 14x16-inch trays about 6 inches deep that resemble seed flats. Fill the trays with the mushroom compost material and inoculate with spawn.
Use a heating pad to raise the soil temperature to about 70 degrees F for about three weeks or until you see the mycelium -- the tiny, threadlike roots. At this point, drop the temperature to 55 to 60 degrees F. Cover the spawn with an inch or so of potting soil.
Keep the soil moist by spritzing it with water and covering it with a damp cloth that you can spritz with water as it dries. Button mushrooms should appear within three to four weeks.
Sources: Wikipedia, Agriculture Research, google images,
Many people are surprised when they learn that organic farmers are allowed to use some pesticides. What they often don't realize, though, is how carefully scrutinized every pesticide is before it becomes allowed in organic agriculture, and how many steps organic farmers need to take before they can use these pesticides. Further, the law that created the national organic standard very clearly states that farmers can only use pesticides that were derived from natural sources, and these naturally derived pesticides must not have long term effects or persist in the environment.
You may be asking, "But why are organic farmers allowed to use any pesticides at all, even naturally derived ones?"
To understand the answer, it helps to take a step back and look at all the things organic farmers are required to do to avoid needing pesticides in the first place.
All organic farmers need to have an organic systems plan in place that details how a producer will use cultural, biological, and mechanical practices to control weeds and insect pests, and avoid the need for any pesticides at all.
These practices include activities like:
• Crop rotation and soil and crop nutrient management practices
• Keeping fields clean to remove disease vectors, weed seeds, and habitat for pest organisms
• Selection of plant species and varieties that are suited to site-specific conditions and resistant to prevalent pests, weeds, and diseases
• Use of beneficial insects, like ladybugs, that are predators or parasites of the pest species
• Development of habitat for natural enemies of pests
• Non-synthetic controls such as lures, traps, and repellents
Sometimes, despite a farmer's best efforts, these methods will fail to prevent infestation from a particular pest, fungus, or disease.
In these instances, organic farmers are allowed to choose from a carefully screened list of allowed pesticides. If farmers were not allowed to use these substances, they might face a total crop loss.
The standard is designed to prevent such catastrophes by allowing organic farmers to use approved pesticides as a last resort.
How are pesticides screened for use in the organic standard?
As stated earlier, pesticides are only allowed when they are derived from natural sources. But this isn't enough, because there are plenty of natural substances out there that could still have negative effects on human health or the environment.
Before a pesticide is allowed, the law requires it to be evaluated to make sure that:
• It is not toxic to non-target organisms (humans or wildlife)
• It breaks down quickly and does not persist in the environment
• The manufacturing process for the substance does not result in environmental contamination
• It does not have negative effects on soil health, soil microorganisms, other crops or livestock
• There aren't any safer alternatives that could be used.
If a pesticide meets all of these criteria, then it can be used as a last resort by organic farmers. We know that many of the pesticides allowed in non-organic agriculture are linked to a growing list of negative health effects, including cancer, nervous-system and lung damage, reproductive dysfunction, and possibly dysfunction of the endocrine and immune systems.
In contrast, the pesticides allowed for use in organic agriculture are carefully and regularly screened to make sure that they don't cause any harmful effects for human health or the environment. If new information comes to light that shows that a pesticide allowed in organic agriculture isn’t as safe as we thought, that pesticide gets taken off the list of allowed substances.
It's important that organic farmers have access to these carefully screened pesticides when they need them, so they can avoid catastrophic loss of their crops. But it's reassuring to know that these pesticides are carefully screened to make sure their use doesn't result in accidental catastrophe for the people and wildlife that are exposed to them.
For 100 % Organic Certified Inputs visit www.orgakart.com
serving you with best service at your doorstep.Free shipping anywhere in India.
In this modern day to maintain soil quality for healthy plant growth every plant needs some components, humic acid is one of them. Humic acid is a natural bio-stimulant that is derived from leonardite and is among the most concentrated organic material available today. Elemental analysis of humic acid has shown it to consist largely of carbon and oxygen (about 50% and 40% respectively). Humic acid also contains hydrogen (about 5%), nitrogen (about 3%), phosphorous and sulfur (both less than 1%). Humic acid is a complex of closely related macromolecules.
Crystal Humic Acid
Humic acid is a principal component of humic substances, which are the major organic constituents of soil (humus), peat, coal, many upland streams, dystrophic lakes, and ocean water.
Humic substances of the soil provide a source of energy to living organisms of the soil, as they do not have access to energy produced through photosynthesis like terrestrial plants. For this reason, the presence of organic substances is of great importance in ensuring the occurrence of metabolic reactions in the soil. Soil organisms such as algae, yeast fungi, bacteria, nematodes, mycorrhizae, etc. perform important functions such as improving the soil fertility and structure and promoting plant growth and resistance against various diseases.
Humus compounds are complex natural organic compounds that are formed in soils from plant residues, by a process of “humification”. Humus materials are complex aggregate of brown to dark colored amorphous substances, which have originated during the decomposition of plant and animal residues by microorganisms, under aerobic and anaerobic conditions, in soils, composts, peat bogs, and water basins. Chemically, humus consists of certain constituents of the original plant material resistant to further decomposition; of substances undergoing decomposition; of complexes resulting from decomposition, either by processes of hydrolysis or by oxidation and reduction; and of various compounds synthesized by microorganisms.
Humic and Fulvic Acid Biostimulants
Most gardeners know the value of adding compost for growing a healthy garden. Compost, the decomposed remains of plants, animals and their byproducts, provide many of the raw materials for vigorous plant growth. Humic acid is extracted from prehistoric compost piles. Although much of the fertilizer value of the compost has long been leached away, the biostimulant value still remains. Humic acids consist of two parts, humic acid and fulvic acid. Humic and fulvic acids actively help the plant take up nutrient ions that are often locked up in the soil. The extracts, obtained from leonardite, alsocontain many beneficial trace elements that activate important enzymes in the plant.
Greatest Value as Chelators:
The greatest value of humic and fulvic acids are their roles as chelators. Humic and fulvic acids have functional groups that act as claws, holding mineral ions strongly enough to keep them from reacting with each other and becoming unavailable to the plant, but weakly enough so that they can be released to the plant cells on demand. Humic acid transports the minerals to the outside of the cell membranes, and releases the minerals for uptake by the plant. The fulvic acid fraction consists of small organic molecules that easily penetrate cell membranes. The more biologically active of the two fractions, fulvic acid transports minerals through the cell membranes and releases them directly to the plant cells.
"HUMIC ACIDS AND SEAWEED EXTRACTS, WHEN USED TOGETHER… WORK 50% MORE EFFECTIVELY THAN EITHER PRODUCT USED ALONE."
Why Use Humic products?
Growers must put Carbon back into their agronomy practices in an efficient and readily available manner, while reducing dependency on synthetic fertilizers and chemicals. This is the only path to continued agricultural sustainability, otherwise the Carbon (Food for soil organisms) diminishes to zero and renders the addition of man-made synthetic nutrients pointless.
Enhance Nutrients Uptake-
Humic products are extremely effective in combating salinity issues that arise from heavy use of synthetic fertilizers and well water degradation. Feeding soil bacteria massive amounts of Carbon(their primary food source) along with the Energy and Oxygen necessary to respirate the food, stimulates massive root growth. Larger root system means more water and nutrients available for sugar production = Increased Yield.
Increase Crop Production-
Plant health is based on the ability to produce more carbohydrates than are consumed. The health, quality and yield are increased based on a surplus of carbohydrate.
Unfortunately, the overuse of fertilizers and chemicals made the soils more saline, limiting the plants ability to grow substantial root mass and therefore decreased the plants ability to uptake water and nutrients. Soil amendments such as elemental sulfur, gypsum, and other calcium materials do not help reclaim saline soils, but rather increase total salinity, further compounding the problems.
Modern farming practices, irrigation, drainage, cultivation, harvesting, compaction, heavy use of synthetic fertilizers and chemicals have contributed to the depletion of soil humus and beneficial bacteria to a level where crop sustainability is severely threatened. Humic substances have historically been re-generated in the soil through such practices as crop rotation, planting legumes, green manure, and applying compost. These practices are time consuming, costly and today's economic pressures prevent growers from sustaining these practices.
Now, a sustainable method of adding significant amounts of clean activated Carbon back into our soils is readily available through Humic products.
Humic substances add tremendous amounts of "natural" food for soil organisms in a cost-effective and sustainable manner, which also increases the Cation Exchange Capacity of the soil, another Huge benefit!
Decreases Water Uses-
Water and Nutrient holding capacity is greatly enhanced with the addition of Humic products. Soil is better "conditioned" with the addition of Carbon through Humic. Modern farm cultural practices like plowing and rototilling have significantly decreased soil Carbon levels through the introduction of atmospheric oxygen which volatilizes off as carbon dioxide. Another Huge reason to incorporate Humic products into your agronomy program.
Humic acid’s role in improving soil quality-
Most people are quick to say Humic Acids are fertilizers, but in fact, it is more of a natural soil conditioner. The benefits far outweigh the costs and with so many soils being depleted around the world today, Humic Acids are an effective product to reverse the depletion trend. In a world where we are seeing world population grow at an exponential rate, and are losing arable acres on which to grow crops, we need to fertilize crops to maximize production and feed the hungry.
Humic acid’s role in improving Plants growth-
One way plant growth is improved is through the structural improvement of both clay and sandy soil allowing for better root growth development. Plant growth is also improved by the ability of the plant to uptake and receive more nutrients. Humic acid is especially beneficial in freeing up nutrients in the soil so that they are made available to the plant as needed. For instance if an aluminum molecule is binded with a phosphorus one, humic acid detaches them making the phosphorus available for the plant. Humic acid is also especially important because of its ability to chelate micronutrients increasing their bio-availability.
The activities of beneficial soil microbes are crucial for the sustainability of any plant growth. Humic acid stimulates microbial activity by providing the indigenous microbes with a carbon source for food, thus encouraging plant’s growth and activity. Soil microbes are responsible for solubilizing vital nutrients such as phosphorus that can then be absorbed by the humic acid and in turn made available to the plant for better growth and root development. Additionally, microbes are responsible for the continued development of humus in the soil as it continues to break down not fully decomposed organic matter. This in-situ production of humus continues to naturally add to the humic acid base and its benefits.
Most of the time we seen tiny insects of various colors crawling on plants and vegetables in our garden: These are aphids! One of the most common garden pests, aphids are small insects found in an array of colors, including yellow, black, red, pink, brown and green. They live and eat in colonies, so if you see one aphid, it’s likely many more are nearby.
Aphids damage plant growth by sucking on leaves and stems and can also spread viruses throughout your garden. If that isn’t enough to make you immediately take steps to evict aphids from your garden, they their discharge, a substance called “honeydew” that subsequently grows a type of mold fungus, might. Yuck!
Fig.1 Aphids on Plant
Don’t panic, though, if you see these miniscule pests bouncing around your vegetable beds. There are simple, natural ways to reduce the aphid population and discourage them from utilizing your garden as the source of a free meal.
Many ways to control Aphids in Your Garden:
1. Inspect Your Plants-
Whenever we have free time inspect your garden. A daily inspection of your garden is probably the easiest and most effective method of controlling aphids. Daily inspections will help you to detect the presence of aphids before the situation gets too serious, allowing you to deal with them right away. Watch for curled leaves, stunted growth or deformed areas on your plants all of these can indicate the presence of an aphid infestation.
Fig.2 Plant Inspection
You might think that an aphid invasion would be instantly noticeable, especially if you work in your garden frequently, but sometimes it takes more than a glance to ensure everything is going smoothly. Keep your eyes open and examine your plants thoroughly, especially under the leaves. You’ll save endless amounts of time in the long run if you pay careful attention to the plants that aphids are particularly attracted to, including peas, potatoes, tomatoes, cabbage, roses and fruit trees.
2. Crops Rotation-
Crop rotation is an excellent though less immediate solution to minimizing aphids on the vegetables in your garden. You obviously won’t be rotating the location of your fruit trees and perennial plants, but take note of the vegetables and annuals that the aphids attack most frequently so that you can move those plants to a different area of your garden the following spring before the aphids return. (When rotating your crops, be sure to keep careful records of your garden for reference.)
Fig.3 Crop Rotations
3. Pick and Spray-Organic!
There are several ways you can manually remove these mini menaces from your plants, beginning with the easiest simply pick them off and squish them as you see them. Of course, this is a time-consuming process, and you might prefer a more efficient method, such as spraying your plants with soapy water. This washes the insects off of the plant and discourages them from climbing back on. You can also experiment with including additional ingredients in your spray, such as cayenne pepper or garlic, or skip the supplemental ingredients and opt simply for a spray of water it can be quite effective on its own.
You can spray certified organic pesticides like Ultra Act, Defender etc. for controlling Aphids in your organic garden.
4. Plant Companions-
While aphids are attracted to many garden plants, there are some they shy away from, including onions and garlic. Arrange companion plants near areas where you particularly want to discourage aphids, such as near rose bushes.
Fig.4 Companion Plants
5. Fit Traps-
Using sticky traps made for aphids can be another simple way to remove these pests from your garden. Simply placing pans of soapy water near areas of significant infestation can work, too. Use a yellow container, if possible, as aphids are attracted to the color yellow. Row covers can be another effective option for protecting your plants and keeping aphids away.
You can use Yellow Pads for controlling Aphids in your garden.
Fig.5 Yellow Sticky Trap
6. Encourage Beneficial Insects-
The praying mantis, the green lacewing and the aptly named aphid lion (or assassin bugs) are all beneficial predators to introduce to your aphid-overrun garden. But it’s the unassuming ladybug (also known as the ladybird) that takes first prize in the pest-eating contest. Ladybugs can devour an impressive number of aphids in a short period of time, while posing no danger to your garden.
Fig.6 Beneficial Insect
You can buy beneficial insects to release in your garden, but this doesn’t always work as well as encouraging them to visit your garden naturally. Attract desirable insects by opting for an organic garden, then selecting plants that are favored by ladybugs and their friends. Try marigolds, sunflowers, dill, cilantro, nasturtiums and even the lowly dandelion. By filling your garden with ladybug-friendly plants, you can naturally minimize the presence of aphids in an effective way.
Water is a precious resource and the cost is rising all the time. We can all tread a little lighter on the planet by taking a few moments to re-evaluate our garden design and watering habits to eliminate inefficient practices that waste water … and reap the benefits at the same time!
1. Water Pots in the Afternoon and your Garden in the Morning –
Research shows that the timing of when you water pot plants during the day can have a significant effect on plant growth. For watering the garden early morning before the temperature begin to rise, winds are lower and there is less evaporation. Morning watering gives the plants a good supply of water to face the heat of the day.
Fig.1 Water Supply
The research found that plants watered after 12.00 pm and during the afternoon, “significantly outperformed plants grown with early morning irrigation.” So, watering container plants in the afternoon may lead to healthier, stronger growing plants compared to container plants watered early in the morning.
Avoid evening watering especially on the foliage as night-time temperatures are often inadequate to dry the moisture on the leaves which can encourage some fungal pathogens to establish. However, any time plants start to show symptoms of drought stress is the time to water them – even if this means the middle of the day. Waiting too long may be too late.
2. Harvest Water – Save and reuse water wherever you can:
Install a water tank rather than wasting rainwater, to maximize roof runoff and redirect it for use on your garden. Slim line tank and water harvesting systems are available for even the tiniest of spaces.
Fig.2 Harvesting of Water
Save your Cooking Water – If you steam or boil vegetables, save the water rather than tipping it down the sink! It is full of nutrients and when cooled, makes a free fertilizer for watering your plants.
Reuse Fish Tank Water – When you clean your fish tank, use the ‘old’ nitrogen and phosphorous-rich water on your plants.
Use a Compost System – Even micro gardeners can make compost no matter how small a space you might have. Whether you make or buy a worm farm or mini compost system, you will add a valuable water saving resource in your garden. Worm castings and compost hold moisture in your soil and help retain nutrients where they’re needed. Frugal gardeners needn’t buy a compost bin – there are many micro systems you can make yourself. I’ve made several low-cost systems that work well including converting a 60 liter black garbage bin by drilling 1cm holes on the sides and base and covering with the lid. It can be turned regularly by simply rolling it on its side!
3. Choose Your Plant Container Carefully –
Different materials heat up quickly or lose moisture due to porosity so think about your pot location before making a final decision. For example, metal heats up quickly so raised galvanized garden beds and metal containers will draw moisture out of the soil and these gardens will need more watering. If you live in a hot climate, this may be a major consideration. Clay pots such as unglazed terracotta also lose moisture through their porous surface and the soil will dry out faster than glazed pots. If you just have to have that metal or terracotta container, then consider using them as a cache pot (an outer decorative pot) and put a smaller less porous pot inside to retain vital moisture. Use coco peat for increasing water retention quality.
Fig.3 Plant Container
4. Mulch in Garden-
Up to 70% of water can evaporate from the soil on a hot day if you don’t have mulch as a protective layer on top. Mulch is one of the best moisture holding strategies you can employ. It prevents evaporation from the soil surface, helps suppress water-thieving weeds from growing and many mulches add vital nutrients to the soil at the same time. Avoid fine mulches that tend to clump and become water-repellent. Instead, use a coarser mulch which allows water/rain to move down through to the soil. A depth of 3-5cm in a pot (depending on the size) and even deeper (8-10cm) in a garden bed is ideal. Apply mulch onto moist soil and water in well.
Fig.4 Mulch in Pot
Remember, any newly installed plants (even natives and drought-tolerant species) need adequate water until they become established when water requirements will reduce.”
5. Capture Water with Good Design –
Using a variety of design principles in your garden will help you retain moisture where you need it by storing moisture in the soil and can assist run-off in areas that get too wet. Some simple principles to apply are: use plant water-loving species that suck up moisture in boggy areas or use diversion drains, swales and terraces to help intercept water flow and spread it out, so it seeps slowly into the ground where you want it rather than being lost into drains and causing erosion. Build mounds around trees and shrubs to reduce runoff and allow moisture to soak slowly into the soil around the canopy drip line and roots. Good design also applies to pruning: remove unnecessary lower branches and leaves from trees. Not only does this create a more structurally appealing tree by ‘lifting’ the eye up to the canopy, but with fewer leaves there is less moisture loss and this lowers the tree’s water requirements.
6. Increase Organic Matter –
Whilst this comes naturally to most organic gardeners, many don’t realize the benefits of building humus in the soil. Organic matter absorbs many times its own weight in water, which is then available for plant growth. It provides many benefits: clay soils with added organic matter will accept water more quickly and organically amended sandy soils hold water longer, and don’t need to be watered as frequently. One of the easiest ways to build organic matter is to add compost that breaks down to humus. This has an amazing potential to hold moisture, nutrients and build soil health. It has a buffering effect against drought and plant stresses too. You can also add organic matter with worm castings; vegetable scraps; mulches like nutrient rich Lucerne (also known as alfalfa) and pea straw; lawn clippings and leaves.
7. Avoid Overwatering –
This bad habit increases your water bill; leaches valuable nutrients from the soil (costing you money to replace them); causes loss of oxygen in the soil pore spaces increasing the chance of root rot and other diseases from suffocation; and wastes a precious resource. Even worse, it breeds dependent plants with shallow root systems so you’ll never be able to take a holiday without returning home to a garden filled with dried arrangements!
Other Factors That Affect Plant Water Use:
Applying Organic fertilizer stimulates growth and increases plant water use in turf, ornamental shrubs and trees, fruits and vegetables.
Pruning of landscape plants promotes new growth that results in higher water use.
When plants are flowering and fruiting they have greater water needs.
High, frequent mowing of turf increases water use by providing more leaf surface for transpiration however, this type of mowing also increases rooting depth, making the grass more drought tolerant.
Increase mowing height of lawns to allow grass to develop deeper root systems.
Keep the lawn mower blade sharp to make cleaner cuts that cause less water loss than cuts from dull mower blades.
Control all weeds that steal water that would otherwise be available for desirable plants.
Be tough! Don’t waste water on unhealthy or undesirable plants – instead remove or replace them.
In daily life garlic use is very common. Along with green onions, garlic is one of the best health-friendly plants you can grow at home. It is super-easy and super-cheap. You may not like its taste and odor, but eating a whole garlic bulb a day works miracles for your body.
Garlic with its antiviral and antibacterial properties helps boost your immunity and keeps you looking fresh and healthy. While in some cases garlic supplements are available and prescribed as a preventive measure for common cold, it's actually very easy to incorporate a few cloves of garlic in our daily meals. Here's how you can consume garlic without having to deal with that awful breadth.
Fig.1 Organic Garlic
Garlic is a simple food that has strong healing properties. Garlic is rich in nitrogenous substances, sodium, potassium, selenium, calcium, magnesium, silicon, sulfuric, phosphoric acid, vitamin C, D, B, phytosterols, extractives, and essential oils.
It contains a phytoncide called allicin, formed during mechanical destruction of plants, meaning you should crush or grind your garlic to enjoy maximum benefits from this component.
Researchers believe that allicin has strong bacteriostatic effect which cures infections quite faster.
Garlic is packed with anti-fungal agents, which makes it much more powerful compared with many antibiotics in use today.
To start your garlic plant you need:
Fig.2 Planting Plot with Organic Potting Soil
Note:
Much of the garlic sold at grocery stores is treated with a hormone that prevents cloves from sprouting to prolong their shelf life.
For best results, either use organic garlic or wait until you see the garlic begins to sprout on its own, often forming nubbins of roots at the same time. If you take a closer look, you might even see cloves sprouting at the store!
Instructions:
Fig.3 Seedling Trays
Take good notice of this as well:
At some point of time, the greens will stop growing. When they dry up and turn brown, dig out the cloves and each of them should have formed a full bulb. Take a clove from that bulb and start all over.
When to plant garlic in fall, plant cloves in well-drained beds after the first frost has passed and the soil is cool. Cloves can also be planted in late winter as soon as the soil thaws, but fall-planted garlic produces bigger, better bulbs.
Garlic likes a lot of moisture, but will start to develop yellow leaves if they stay wet for too long. Since garlic loves cold weather, experimenters from zones 9-11 might be better off choosing another variety through mail order. On the bright side, you can also grow elephant garlic using the same instructions and it typically performs much better in warmer climates than its smaller cousin.
Fig.4 Growing Garlic
Garlic Types:
Soft neck types grow best where winters are mild, though some tolerate cold to Zone 5. Most varieties do not produce scapes (edible curled flower stalks), but soft necks are great for braiding. Subtypes include Creole, artichoke and many Asian varieties.
Hardneck types adapt to cold winter climates, and all produce delicious curled scapes in early summer. Popular subtypes include porcelain, purple stripe and rocambole varieties.
Elephant garlic produces a large, mild-flavored bulb comprised of 4 to 6 big cloves. Closely related to leeks, elephant garlic is hardy to zone 5 if given deep winter mulch.
Fill your hands with freshly-harvested organic garlic right from your own window sill and enjoy good health!!!
What is shade net?
Shade net is a lightweight knitted polyethylene fabric that provides plants and people with protection from the sun. Shade cloth fabric is available in densities ranging from 50% to 90% to suit the unique needs of different types of plants, flowers and crops. It can be used with greenhouses, hoop structures and in field applications. Additional uses include fences, windscreens and privacy barriers. Shade material is rot and mildew resistant, does not become brittle and is water permeable. It offers superior ventilation, improves light diffusion and keeps greenhouses cooler. As a result, shade cloth can help to lower energy costs by reducing the need to run fans as often in the warmer months. Installing shade net is quick and easy as is taking it down during the off-peak season.
What is reflective shade and how is it beneficial in my greenhouse?
Reflective shade helps create an optimum growing climate because it reflects the sun's radiation rather than absorbing it. Reflective shade assists in controlling the light, temperature and humidity balance. Reflective shade screens are also energy-saving. Excellent climate characteristics include low daytime temperature due to maximum reflection and high energy savings at night, which keeps crop temperature close to ambient.
What is the difference between standard shade net and reflective shade net?
Standard shade net is an affordable, extremely durable means of protecting plants and crops from direct sunlight. Shade net is placed on the exterior roof of a greenhouse, cold frame or high tunnel where it blocks a percentage of light from penetrating the building, hence keeping plants more comfortable. This type of shade material is appropriate for general gardening, farming and greenhouse applications and is widely used in the commercial farming and gardening industry
Which shade material should I use?
You can use shad net material according to your crop. Those shade material helps protect livestock, pets, plants, and people from direct sunlight and also works well as a privacy barrier or windscreen. Experience has shown that growers use mostly 50% to 60% density, with the high densities of 70% to 80% used in southern states and for light-sensitive plants in northern states.
Many people find that using a high density shade on roofs and a lower density shade on walls is a good method for creating ideal shade conditions. Vegetable gardeners should check with their local University Agricultural Extension office to determine the shade cloth density that is appropriate for both the climate and plant variety.
What does the shade percentage mean in relation to the shade material?
Shade density is determined by the percentage of light blocked by the shade. For example, the definition of 80% shade is that only 20% of light passes through it. A shade percentage of 30 to 50% is ideal for vegetables, while 80 to 90% is ideal for protecting people.
Advantages of shade net:
A Cover crop is a crop which planted to manage soil erosion, soil fertility, soil quality, water, weeds, pests, diseases and biodiversity in an ecosystem. Cover crop charge your soil and improve soil nutrients. Here is what you need to know about cover crop planting methods and reliable cover crop options for your organic home garden or farm..
There are three main ways to improve soil: grow cover crops, mulch the surface with biodegradable mulches, dig in organic soil amendments (such as compost, grass clippings, rotted manure or wood chips). All have their advantages and none should be discounted, but cover cropping is the method least likely to be practiced in home gardens. There is a reason for this: Information on using cover crops is tailored to the needs of farmers who use tractors to make short work of mowing down or turning under cover crops. But when your main tools for taking down plants have wooden handles and you measure your space in feet rather than acres, you need a special set of cover crop plants, and special methods for using them.
How Cover Crops Help
A cover crop is any plant grown for the primary purpose of improving the soil. Since the early 1900s, farmers have used cover crops to restore fertility to worn-out land. In addition to helping bulk up soil with organic matter, cover crops prevent erosion, suppress weeds, and create and cycle soil borne nutrients using the power of the sun. Recent advances in soil biology have revealed two more ways cover crops can improve soil.
Rhizodeposition is a special advantage to working with cover crops. Many plants actually release sugars and other substances through their roots. They are like little solar engines, pumping energy down into the soil. With vigorous cover crop plants, this process goes on much more deeply than you would ever dig — 6 feet for oats and rye! If you are leaving your garden beds bare in winter, you are missing the chance to use cold-hardy crops such as cereal rye or oats to solar-charge your soil. Thanks to this release of sugars, the root tips of many plants host colonies of helpful microorganisms, and as the roots move deeper, the microbes follow.
But so much for scientific talk. If you’ve experimented with cover crops, perhaps you have dug up young fava beans or alfalfa seedlings to marvel at the nitrogen nodules on their roots, or watched a stand of buckwheat go from seed to bloom in four weeks flat. Or how about this one: It’s April and the soil is warming up and drying out. After loosening a clump of fall-sown wheat with a digging fork, you pull up a marvelous mop of fibrous roots and shake out the soil. What crumb! The soil’s structure is nothing short of amazing! These are the moments an organic gardener lives for. Use certified organic inputs for proper growth of plant in your garden.
Bio-drilling is what happens when you use a cover crop’s natural talents to “drill” into compacted subsoil. For example, you might grow oilseed or daikon radishes as a cover crop where their spear-shaped roots will stab deep into tight subsoil. Bio-drilling action also takes place when deeply rooted cover crop plants penetrate subsoil and die. Then, the next crop grown may actually follow the rooting network mapped out by the cover crop. Maryland researchers were able to track this process using special camera equipment (a minirhizotron), which took pictures of the interactions between cover crop (canola) and crop plant (soybean) roots. As the canola’s deep roots decomposed, soybean roots followed the trails they blazed in the subsoil, hand in glove. In addition to reduced physical resistance, the soybean roots probably enjoyed better nutrition and the good company of legions of soil-dwelling micro critters, compliments of the cover crop.
Dozens of plants have special talents as cover crops, and if you live in an extremely hot, cold, wet or dry climate, you should check with your local farm store or state extension service for plant recommendations — especially if you want to use cover crops under high-stress conditions. Also be aware that many cover crop plants can become weedy, so they should almost always be taken down before they set seed.
How to Take Cover Crops Down
Speaking of taking down, this is the sticking point for most gardeners when it comes to cover crops, which is why it’s a good idea to start small with your first cover crop plantings. Traditionally, cover crops are plowed under, but most gardeners chop, cut, or pull them, and use them for mulch or compost. Or you can assign the task to a flock of pecking poultry. All are sound methods, and it is possible that composting cover crop plants produces a more balanced soil amendment compared to chopping raw-crop residue directly into the soil. Pulling plants saves time, too, because you don’t have to wait three weeks (or more) to plant, in order to avoid possible negative reactions between rotting plant residues and the plants you want to grow. For example, the cover crop known as sudex (a fast-growing sorghum-Sudan grass hybrid) produces gargantuan amounts of biomass (leaf, stem, and roots), but fresh sudex residue in the soil inhibits the growth of tomatoes, lettuce, and broccoli. Oats, wheat, and other cover crop plants also produce allelopathic substances that can temporarily hinder the germination and growth of other plants, too, but not in quantities sufficient to cause serious disturbances in the garden. If you chop in fresh cover crop residues, just plan to wait two to three weeks before sowing crop seeds
Top Cover Crop Options
The following cover crops work well in a wide range of climates and situations, and they’re not hard to take down, as long as you do it at the right time and in the proper way. We’ve selected these six because they are easy to manage using hand tools, grow during different seasons, and provide multiple benefits in the garden.
During the summer, buckwheat (Fagopyron esculentum) is in a class by itself as a cover crop. Seeds sown in moist soil turn into a weed-choking sea of green within a week, with many plants growing 2 feet high or more and blooming in less than 30 days. Should you need to reclaim space that has been overtaken by invasives, buckwheat can be your best friend. In my garden, buckwheat has been a huge ally in cleaning up a spot overrun by dock, bindweed, and other nasties that grow in warm weather. For two years, each time the noxious weeds grew back, I dug them out and planted more buckwheat. Throughout the battle, the buckwheat attracted bees and other buzzers in droves. Fortunately, even mature buckwheat plants are as easy to take down as impatiens — simply pull the succulent plants with a twist of the wrist, or use a hoe or scythe to slice them off at the soil line. You can let the dead plants die into a surface mulch and plant through them, gather them up and compost them, or chop them into the soil.